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1 Introduction to Centrality Measures

Centrality measures are used to deduce the impact of different nodes in a
graph. It is a way to measure how important one node is compared to
another. There are many different measures of centrality due to the wide
array of problems that centrality is used in. In our paper we will discuss four
different types of centrality, including vertex (degree) centrality, closeness
centrality, eigenvector centrality, and betweenness centrality. We will begin
by defining these measures in terms of weighted and unweighted undirected
graphs, then expand our investigation to include directed graphs.

Throughout our initial explorations of centrality and community structures,
we will be focusing on four simple unweighted graphs:

1. The cycle graph on five vertices, C5 shown below
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Figure 1: The cycle graph, C5

2. The complete graph on five vertices, K5
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Figure 2: The complete graph, K5

3. The five-node bow tie graph,
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Figure 3: The bowtie graph, B5

4. The seven-node bow tie graph
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Figure 4: The bowtie graph, B7

1.1 Degree Centrality

The degree centrality is defined as the degree of a specific node. This can
vary depending depending on the type of graph in question.

Unweighted Graph Centrality For an unweighted graph, the degree cen-
trality is defined as the number of links adjacent to a node. For example, the
degree centrality of each vertex in the cycle graph of Figure (1) is CD(v) = 2.
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For an unweighted, directed graph, there are three distinctions of degree cen-
trality:

1. In-Degree Centrality- Only the edges pointing towards the node are
taken into account

2. Out-Degree Centrality - Only the edges pointing away from the node
are taken into account

3. In-Out-Degree Centrality - All edges, regardless of direction, are fac-
tored into the measurement

Weighted Graph Centrality In a weighted graph, degree centrality is still
only defined for the links adjacent to a node. However, degree centrality is
now the sum of the weights of adjacent edges. For example, in Figure 5 of
the weighted bowtie, CD(3) = 16. The same distinctions of degree centrality
also apply to a directed, weighted graph.

1. In-Degree Centrality- Only the edge weights of the links pointing to-
ward the node are included in the sum

2. Out-Degree Centrality - Only the edge weights of the links pointing
toward the node are included in the sum

3. In-Out-Degree Centrality - All edges, regardless of direction, are fac-
tored into the sum of the adjacent edge weights

Degree centrality is somewhat limited in its application because it only mea-
sures which nodes have the most connections. However, an example of its
use is determining interactions in a social network. If Instagram’s network
was modeled by an unweighted, undirected graph, a high degree centrality
would represent a person with a large amount of connections. Therefore,
they interact with many people and are more central to the graph.

1.2 Betweenness Centrality

The betweenness centrality is a measure of centrality within a connected
graph that quantifies how many shortest paths must pass through a partic-
ular node. For a given node v, σs,t denotes the number of shortest paths
between unique nodes s and t while σs,t(v) denotes the total number of

5



shortest paths between s and t that pass through node v (Brandes 2001).
The calculation of betweenness centrality is expressed as

CB(v) =
∑
v 6=s 6=t

σs,t(v)

σs,t
.

A higher betweenness score for a node implies that the node acts as a bridge
from one portion of the graph to another. For example, destinations within
a city can be represented as nodes and roads connecting them can be rep-
resented as edges. A node with a high betweenness centrality is akin to a
stop along a road that everyone was pass by to get to a certain location.
By treating destinations within a city as nodes and roads as edges between
them, one can, for example, begin to determine bottlenecks and busy roads
by measuring betweenness centrality, as well as under-utilized roads.

Unweighted Betweenness Graph Centrality

The formula provided above does not define what we mean by “shortest
path”. In an unweighted graph, the shortest path is determined by counting
the number of edges between two nodes. The path with the least amount
of edges is the shortest. In Figure (4), for example, there are two shortest
paths from node 3 to node 6 both of length 3. Here is a table that shows
the calculations for node 1 in the B5 graph from Figure (3):

s → t σs,t(1) σs,t
σs,t(1)
σs,t

2 → 3 0 1 0

2 → 4 0 1 0

2 → 5 0 1 0

3 → 4 0 1 0

3 → 5 0 1 0

4 → 5 0 1 0

Total: 0

Since we are focusing on node 1, we do not include it in the paths we consider.
Each pair of vertices considered only has 1 shortest path, and none of them
pass through node 1. So, the sum of σs,t is 6 and the sum of σs,t(1) is 0.
Therefore, since 0

1 = 0, CB(1) = 0. Note that CB(i) = 0 for i = 2, 4, 5 as
well, due to symmetry.
We examine CB(3) to compare with node 1 since node 3 appears to be more
central to the graph.

6



s → t σs,t(3) σs,t
σs,t(3)
σs,t

1 → 2 0 1 0

1 → 4 1 1 1

1 → 5 1 1 1

2 → 4 1 1 1

2 → 5 1 1 1

4 → 5 0 1 0

Total: 4

As we can see, node 3 has a much higher betweenness score and is acting
like a bridge for the graph much more than node 1 is.

Weighted Graph Betweenness Centrality

Take the example of the bowtie graph of five vertices, except this time let’s
apply weights to each of the edges connecting the nodes. This is more likely
to resemble real-world situations in which certain nodes have stronger con-
nections with each other than with others, such as the strength of friendships
in a group of friends. The process of calculating the betweenness centralities
of the nodes in a weighted graph is conceptually similar to the procedure
for unweighted graphs.
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Figure 5: Weighted bowtie graph with 5 nodes, BW (5)

To calculate betweenness centrality for a weighted graph, we do not need
to change our process too much. We just need to modify our interpretation
of the shortest path from one node to another. Also, instead of calculating
σs,t(v)
σs,t

like we did previously, we will just specify yes or no as to whether or
not the node v is contained in the path from s to t. In a weighted graph,
the shortest path between to node has the lowest or highest sum of edge
weights (depending on the problem’s context). Take the example of the
bowtie graph of five vertices, except this time let’s apply weights to each of
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the edges connecting the nodes.
Let us examine the table below where we evaluate the betweenness centrality
of BW (5) where higher weight is better:

s → t Thru 1 2 3 4 5

1 → 2 N N Y N N

1 → 3 N N N N N

1 → 4 N N Y N N

1 → 5 N N Y Y N

2 → 3 N N N N N

2 → 4 N N Y N N

2 → 5 N N Y Y N

3 → 4 N N N N N

3 → 5 N N N Y N

4 → 5 N N N N N

Total: 0 0 5 3 0

So, as we can see, measuring betweenness of weighted graphs will produce
somewhat different numbers because the edge weights are being taken into
account. Based on these calculations, node 3 is the most central to this
graph with node 4 close behind.

1.3 Closeness Centrality

The closeness centrality is defined as the reciprocal of the farness measure
of a node [2]. More specifically, it is calculated by averaging the shortest
path distances from a node to all other nodes.

Unweighted Graph Closeness Centrality

For unweighted graphs, basic closeness centrality is notationally defined as

CC(v) =
1∑

x d(v, x)
,

where we are measuring node v’s centrality. The shortest distance from node
v to node x is represented as d(v, x).

This function for closeness centrality gets us close to what we need, but it
is common to normalize these measurements across the graph by multiplying
by N −1, which is one less than the total number of nodes, N , in the graph.
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This makes it easier to compare centrality measures between different nodes
and other graphs as well. So, the formula is slightly modified to now be

CC(v) =
N − 1∑
x d(v, x)

≈ N∑
x d(v, x)

(as N becomes large).

Here is a table that shows the calculations for node 3 in the B5 graph from
Figure (3):

From → To Shortest Distance

3 → 1 1

3 → 2 1

3 → 4 1

3 → 5 1

Total: 4

Since N = 5 for this graph, N − 1 = 4. Also, the sum of d(x, y) will be 4 as
well. So, we get the closeness measure by evaluating 4

4 , which equals 1. Thus,
the closeness measure for node 3 in this graph is 1. The measurements for
closeness centrality of this graph are summarized at the end of the chapter.

Weighted Graph Closeness Centrality

This method is only slightly modified when dealing with weighted graphs.
In the case of weighted edges, we will follow a similar approach as explained
in the section about betweenness centrality to determine a shortest path
between two nodes. This means that d(v, x) is calculated by adding up
edges’ weights for the paths that are between nodes v and x [5]. In our case,
we will consider that lower edge weight is better. When dealing with flow
problems, for example, edge weights can represent resistance. So, the lower
the weight the better.

We will now calculate closeness for node 3 and 1 of the weighted graph
to compare their measures of centrality. The process is very similar to
unweighted closeness, but to calculate the shortest paths we must sum the
edges and determine which path is best. For BW (5), higher is better so the
table will look like this:
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From → To “Shortest” Distance

3 → 1 9

3 → 2 10

3 → 4 5

3 → 5 6

Total: 30

From → To “Shortest” Distance

1 → 2 13

1 → 3 9

1 → 4 14

1 → 5 15

Total: 51

So, since N = 5, we can calculate node three’s closeness to be 4
30 ≈ .133.

Node one’s closeness is 4
51 ≈ .078. This suggests that node three is more

central to the graph in terms of closeness. This process works similarly for
the cases when lower weight is better. When determining the meaning of the
closeness measure, one must rely heavily on the context of the problem at
hand. Depending on the situation, a higher closeness centrality will equate
to the node being more central, while in other situations a lower closeness
measure will equate to a node being more central.

1.4 Eigenvector Centrality

The eigenvector centrality is the measure of how a node influences a graph
[7]. This means that not only are direct connections taken into account, but
a node’s influence depends upon how connected and influential the nodes
connected to it are. It is an extension of degree centrality. “...eigenvector
centrality gives each vertex a score proportional to the sum of the scores
of its neighbors” [7]. To begin calculating eigenvector centrality, all nodes
must have a basis centrality to begin with. For example, a node i may have
a beginning eigenvector centrality, xi, equal to its degree centrality. Then,
their new eigenvector centrality , x′i is calculated by summing the current
eigenvector centrality of ever neighboring node. This is shown below, where
Aij is an entry of the adjacency matrix [7].

x′i =
∑
j

Aijxj
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This process can be repeated infinitely many times, so it is much easier
to convert the formula above to matrix notation. This is shown below, where
A is the adjacency matrix, t represents the current number of steps, x(0) is a
vector containing the eigenvector of each node, and x(t) is the new centrality
vector [7].

x(t) = Atx(0)

Eventually, after some limit interpretations and rewriting x(0) as a linear
combination of the eigenvectors of the adjacency matrix, it true that the
final eigenvector centrality of any node is equal to the sum of the eigen-
vector centrality of any other node divided by the largest eigenvalue of the
adjacency matrix. This is shown below, where k1 is the largest positive
eigenvalue of the adjacency matrix.

xi =
1

k1

∑
j

Aijxj

Based on this final definition of eigenvector centrality, a simple approach
to calculating the eigenvector centrality of the nodes of a graph is to convert
the graph to an adjacency matrix and find its eigenvalues and corresponding
eigenvectors. Take the eigenvector corresponding to the largest eigenvalue
and scale it so the maximum value is 1. Take the dominant eigenvector and
divide its entries by the maximum entry. Each entry of this calculated vector
corresponds to each node’s centrality measure. For example, entry three of
the vector corresponds to the centrality measure for node three. Here is an
example of the process using the graph shown in Figure (3):

We will first construct the adjacency matrix of B5:

A =


0 1 1 0 0
1 0 1 0 0
1 1 0 1 1
0 0 1 0 1
0 0 1 1 0

 .

The eigenvalues are

{2.56155,−1.56155,−1,−1, 1},

11



which correspond respectively to the eigenvectors


1
1

1.56
1
1

 ,


1
1

−2.56
1
1

 ,


0
0
0
−1
1

 ,

−1
1
0
0
0

 ,

−1
−1
0
1
1


 .

The largest positive eigenvalue is 2.56155. So, we will take the eigenvector
corresponding to this eigenvalue, sometimes referred to as the “dominant
eigenvector.”
The result is 

0.18
0.18
0.28
0.18
0.18

 .

Consequently, the eigenvector centrality measure for node three, for exam-
ple, is 0.28. It is the highest which indicates that this node has the most
influence in this graph.

1.5 Katz Centrality

The Katz centrality is an improvement upon the aforementioned eigenvector
centrality. In directed networks, two eigenvector centrality measurements
can be calculated. One corresponds to the in-degree portion of the graph
and one corresponds to the out-degree. In most directed networks, the in-
degree of a node is much more relevant than its out-degree. However, issues
arise calculating in-degree eigenvector centrality on directed graphs with
nodes that have no incoming edges [7]. This is the ”0” problem.

As stated, the ”0” problem occurs when there is a node in a network with
an in-degree of 0. This is shown in the figure below.

Node A in the graph has an in-degree of 0. Therefore, it will have and
eigenvector centrality of zero. Since eigenvector centrality bases a node’s
centrality value off the importance and amount of the nodes its connected
to, nodes B and C will have an eigenvector centrality of zero as well. It is
then a domino effect. Node D will ultimately have an eigenvector centrality
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of zero because its connected to three other nodes that have a centrality
value of 0. This does not seem logical because node D has a the largest
in-degree, so it should have some value of centrality. Katz centrality fixes
these issues by giving a “free” centrality value to all nodes, regardless of
their degree [7]. Therefore, we define the Katz centrality of node i to be

xi = α
∑
j

Aijxj + β,

where α and β are adjustable parameters.

Even though it was originally designed to fix problems discovered with di-
rected eigenvector centrality, Katz centrality can be used on any type of
graph. As Newman says, ”It allows a vertex that has many neighbors to
have high centrality regardless of whether those neighbors themselves have
high centrality” [7]. Referring back to the equation to calculate Katz cen-
trality, it can be rewritten in matrix notation as

~x = αAx+ β(~1).

As Freeman proposed in his essay, β is usually set to 1. Setting β to 1 and
solving for ~x we obtain

(I − αA)−1~x = ~1.

He also proposed that α < 1
λ where λ is the highest positive eigenvalue of

the adjacency matrix of the graph. This is due to a few different reasons.
The role of α is to provide a ”...balance between the eigenvector term and
the constant term” [7]. If α was very large, the centrality measurements
would be skewed. The β term would be insignificant and we would obtain
essentially a scaled eigenvector centrality. If α becomes too small, the β
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parameter would take over and all nodes would have relatively the same
centrality. Finally, if α = 1

λ , the centralities diverge. This occurs because
the matrix I − α A is not invertible at this value of α; its determinant is 0.
So, we choose an α such that α < 1

λ , but very close to this value.

Unweighted and Weighted Katz Centrality

Katz centrality is calculated the same for weighted and unweighted
graphs. The only difference is the entries of the adjacency matrix. So,
we will only show one example of a Katz centrality calculation. Recall the
bowtie graph of five vertices in figure 4. Using the matrix equation above,
we will solve for its Katz centrality. The largest positive eigenvalue for its
adjacency matrix was λ = 2.56. Therefore, α must be less than 1

2.56 . We
will then let α = .352 to obtain

(I − 0.352A)−1~1 =
8.77
8.77
13.34
8.77
8.77

 .

This vector is each node’s Katz centrality. This is summed up in the table
below.

Node Measure

1 8.77

2 8.77

3 13.34

4 8.77

5 8.77

These values make sense because node 3 is obviously more central to the
graph and should have a higher value. Also, since the graph is undirected,
nodes 1, 2, 4, and 5 are all symmetric. So, its logical that all their centralities
should all match and be lower than the value of Node 3.

1.6 PageRank Centrality

Katz centrality fixed the ”0” problem of eigenvector centrality, but another
complication arises. This is described by Newman [7]:
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“If a vertex with high Katz centrality has edges pointing to many others then
those others also get high centrality...One could argue that this is not always
appropriate...For instance, the famous Yahoo! web directory might contain
a link to my webpage, but it also has links to millions of other pages. Yahoo!
is an important website, and would have high centrality by any sensible mea-
sure, but should I therefore be considered very important by association?”

This is the ”Inflation Problem”. It occurs when a node with a high centrality
value is connected to other, less significant, nodes. This is shown in the
network below.

The ”0” problem was fixed with Katz centrality, so we can assume that
node A in the above network has some measure of centrality. This means
that nodes B and C will have a positive centrality value as well. Since node
D has the highest in-degree and is connected to nodes A, B, and C, it will
have the highest measure of centrality. However, node D is also connected to
nodes G, H, and I. These three nodes are only connected to node D, so their
in-degree is only 1. However, since they are connected to node D, a very
important actor in the graph, their centrality values will be high as well.
Node D can be thought of as Yahoo!, for example, and nodes G, H, and I
as the some of the insignificant websites its linked to. It is not logical that
they have an extremely high centrality measure just for being connected to a
single node, D. Since node D points to all three of these nodes, its influence
should be distributed evenly among them.

Newman [7] also goes on to argue that the answer is no. This is because
in certain contexts, like Internet links, websites’ centrality is arbitrarily in-
flated if they have one link to a few important sites like Yahoo!. However,
Yahoo! has links to millions of sites. Since Yahoo! points to so many
different websites, Freeman argues that its influence on each of these web-
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sites’ centrality should be diluted, or distributed. This Problem is solved by
implementing PageRank centrality.

To address the ”Inflation Problem”, Katz centrality can be modified to
aid in the dilution of high centrality scores across insignificant nodes [7].
Concretely, nodes that have a high out-degree will have their influence dis-
tributed equally over all their targets. In practice, the amount of centrality
an adjacent node would receive from a high-centrality node would be the
origin-node’s centrality divided by the number of recipients (represented by
the out-degree of the origin-node). The result is that all nodes adjacent
to a high-centrality node will only receive a portion of that node’s central-
ity. This equation is shown below, with koutj the outdegree of node j and
adjustable parameters α and β as in Katz centrality.

xi = α
∑
j

Aij
xj
koutj

+ β

This centrality measure is known as Google’s PageRank algorithm, which
was designed to deliver the most relevant content to users based on both
users’ search queries as well as the respective scores of the pertinent websites.
The definition above has a problem though that arise when koutj is 0. So,
this is fixed by assigning koutj , since xj will be 0 for any of these nodes.
With this in mind, for a network of n websites with adjacency matrix A,
the PageRank of each website is stored in the vector ~x below [7].

~x = (I − αAD−1)−1β~1,

In the above equation, D is the n × n diagonal matrix containing the out-
degrees of each node along the main diagonal. For nodes that have an out-
degree of zero, we artificially set that entry in the diagonal matrix to 1. This
guarantees that the matrix D is invertible; β is a scalar that is conventionally
set to 1 and is multiplied by the n-dimensional ~1 vector. Lastly, α is some
scalar between 0 and 1 that is strictly less than the inverse of the largest
eigenvalue of AD−1. Newman reports that Google has traditionally used
α = .85 for the algorithm, although the reasoning behind this is not well
understood [7]. For the sake of the demonstration below, we will follow
Google’s lead and let α = .85.

Let’s revisit B5, the bowtie graph on five vertices. Recall that we already
constructed its adjacency matrix in the section on Eigenvector Centrality.
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In order to create the diagonal matrix D, we are going to sum the entries
in each column of A and then populate each diagonal entry with these sums
representing each node’s out-degree. Thus,

D =


2 0 0 0 0
0 2 0 0 0
0 0 4 0 0
0 0 0 2 0
0 0 0 0 2

 .

Computing D−1 is easily done by taking the reciprocal of each entry along
the diagonal. Substituting D−1 along with I5 and the adjacency matrix
corresponding to B5 into equation 1.6, we obtain

~x =


1 −.425 −.2125 0 0

−.425 1 −.2125 0 0
−.425 −.425 1 −.425 −.425

0 0 −.2125 1 −.425
0 0 −.2125 −.425 1


−1

· β~1.

Simplifying the above expression, we find

~x =


5.67
5.67
10.64
5.67
5.67

 .
Recall that the vector ~x hosts the PageRank of each node, where the entry
in the first row corresponds to the PageRank of the first node and follows
down the rows chronologically. We observe that node 3 has the highest
PageRank centrality, corroborating what we have previously concluded using
other centrality measures. The PageRank algorithm will generally compute
more reliable centrality scores given that it takes more factors into account
throughout the process.

1.7 Weighted Graphs

All the centrality measures we discussed are very useful. Each one summa-
rizes a node’s importance in different aspects. However, we have only talked
about these in terms of unweighted graphs. When it comes to most appli-
cations, graphs are weighted. This means that one node’s connection to a
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neighbor could be stronger than that node’s connection to another neigh-
bor. For example, a person on facebook has two different friends. Typically,
they will not interact with each one equally. The person may like friend
one’s photos more frequently than the other. Therefore, their connection is
stronger with the friend than friend two. The edge connecting the person
and friend one should be more important than the edge connecting the per-
son and friend two. Hence, it will have a larger weight. In other contexts,
like flow, edge weights represent resistance. Lower edge weight is better
here. The context of a problem will let us distinguish whether low or high
edge weight is desired. We will explain a few of the centrality measure pre-
viously described above in terms of weight graphs. The first is betweenness
centrality.

3

2

1

4

1

2

4

5

Figure 6: Weighted bowtie graph with 5 nodes, BW (5)

To calculate betweenness centrality for a weighted graph, we do not need
to change our process too much. We just need to modify our interpretation
of the shortest path from one node to another. Also, instead of calculating
σs,t(v)
σs,t

like we did previously, we will just specify yes or no as to whether or
not the node v is contained in the path from s to t. In a weighted graph,
the shortest path between to node has the lowest or highest sum of edge
weights (depending on the problem’s context). Take the example of the
bowtie graph of five vertices, except this time let’s apply weights to each of
the edges connecting the nodes.

Let us examine the table below where we evaluate the betweenness cen-
trality of BW (5) where higher weight is better:
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s → t Thru 1 2 3 4 5

1 → 2 N N Y N N

1 → 3 N N N N N

1 → 4 N N Y N N

1 → 5 N N Y Y N

2 → 3 N N N N N

2 → 4 N N Y N N

2 → 5 N N Y Y N

3 → 4 N N N N N

3 → 5 N N N Y N

4 → 5 N N N N N

Total: 0 0 5 3 0

So, as we can see, measuring betweenness of weighted graphs will produce
somewhat different numbers because the weights are being taken into ac-
count. Based on these calculations, node 3 is the most central to this graph
with node 4 close behind.

We will now calculate closeness for node 3 and 1 of the weighted graph
to compare their measures of centrality. The process is very similar to
unweighted closeness, but to calculate the shortest paths we must sum the
edges and determine which path is best. For BW (5), higher is better so the
table will look like this:

From → To “Shortest” Distance

3 → 1 9

3 → 2 10

3 → 4 5

3 → 5 6

Total: 30

From → To “Shortest” Distance

1 → 2 13

1 → 3 9

1 → 4 14

1 → 5 15

Total: 51
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So, since N = 5, we can calculate node three’s closeness to be 4
30 ≈ .133.

Node one’s closeness is 4
51 ≈ .078. This suggests that node three is more

central to the graph in terms of closeness. This process works similarly for
the cases when lower weight is better.

1.8 Summary of Centrality Measures for Unweighted Graphs

We will now give centrality measures for Figures (1), (2), (3), (4), and (1.2).

• C5

Measure of Centrality Node 1 2 3 4 5

Degree 2 2 2 2 2

Betweenness 1 1 1 1 1

Closeness .66 .66 .66 .66 .66

Eigenvector 0.2 0.2 0.2 0.2 0.2

Katz 3.34 3.34 3.34 3.34 3.34

PageRank .66 .66 .66 .66 .66

In any cycle graph, each node will have the same centrality measures
as each other node. This is due to the symmetry of the graph and
indicates that no one node has more influence than any other.

• K5

Measure of Centrality Node 1 2 3 4 5

Degree 4 4 4 4 4

Betweenness 0 0 0 0 0

Closeness 1 1 1 1 1

Eigenvector 0.2 0.2 0.2 0.2 0.2

Katz -2.47 -2.47 -2.47 -2.47 -2.47

PageRank .66 .66 .66 .66 .66

Since the K5 graph is completely connected, every node will have the
same measurements. This means in terms of centrality that each node
is just as central, or influential, to the graph as any other node.

• B5
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Measure of Centrality Node 1 2 3 4 5

Degree 2 2 4 2 2

Betweenness 0 0 4 0 0

Closeness .66 .66 1 .66 .66

Eigenvector 0.18 0.18 0.28 0.18 0.18

Katz 8.73 8.73 13.26 8.73 8.76

PageRank 5.67 5.67 10.64 5.67 5.67

In the case of the bowtie graph on five nodes, node three is going to
claim the largest centrality measures of all the other nodes.

• B7

Measure of Centrality Node 1 2 3 4 5 6 7

Degree 2 2 2 4 2 2 2

Betweenness 2 0.5 2 10 2 0.5 2

Closeness .54 0.29 .54 0.75 .54 .29 .54

Eigenvector 0.14 0.11 0.14 0.22 0.14 0.11 0.14

Katz 6.57 5.61 6.57 10.23 6.57 5.61 6.57

PageRank 5.9 6.02 5.9 11.03 5.9 6.02 5.9

As can be seen in the table, node 4 is the most central node of all.
Since it is in the ”middle” of the graph, it is connected and close to
all other nodes, very influential, and acts as a bridge between one side
of the graph and the other. Thus, all of its centrality measures will be
very high.

1.9 One Size Does Not Fit All

It is easy to fall into the trap of measuring every type of centrality when
analyzing a graph. S.P. Borgatti [4], discussed the issue of thinking that
all measures can be applied in every context. In fact, centrality is not
context-free. Let us first define a few keywords needed before discussing
centrality assumptions. A trail is a sequence of incident links in which no
link is repeated. A path is a sequence in which both links and nodes are not
repeated. A walk is an unrestricted sequence. In short, “all paths are trails
and trails are walks, but not every walk is a trail and not every trail is a
path.” [4]. A geodesic path is a shortest path between two nodes.
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Borgatti [4] also describes three major typologies for flow of information
through a graph:

1. Parallel Duplication - Information can be passed simultaneously along
multiple effected edges within a graph. Examples of this include: In-
ternet DNS server, email broadcast, and attitude influencing.

2. Serial Duplication - Information is passed from one node to another
without the chance of it being passed to itself again later. Information
is replicated and passed on while some is maintained by previous node
in sequence. Examples of this include: mitotic reproduction, viral
infection, gossip, and emotional support.

3. Transfer - Information is an indivisible object that can only be owned
by one node a time. Information travels along trails, so links are
not repeated usually. Examples of this include: package delivery and
money or goods exchange.

Borgatti [4] provides us with these tables that describe different examples
along with which measures of centrality that were found to be relevant:

Parallel Duplication Serial Duplication Transfer

Geodesics – Mitotic reproduction Package delivery
Paths Internet DNS Server Viral infection Mooch
Trails E-mail broadcast Gossip Used goods
Walks Attitude influencing Emotional support Money exchange

Now we can see which centrality measures match up to these processes.
Note that much of the second table is missing. Borgatti [4] also argues that
most of the sociologically interesting processes cannot be accurately mea-
sured using the major measures of centrality. He made special mention of
the fact that are still no measures appropriate for measuring infection and
gossip processes, which could be very important and an area of future study.
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Parallel Duplication Serial Duplication Transfer

Geodesics Closeness
Closeness
Betweenness

Paths
Closeness
Degree

Trails
Closeness
Degree

Walks
Closeness
Degree
Eigenvector

1.10 Conclusion

Academics and researchers are more in less in agreement with respect to
the definitions of these centrality measures and the processes through which
they are calculated as they pertain to undirected, unweighted graphs. These
centrality measures are critical tools in evaluating the influence and impor-
tance of nodes in a graph, and they generally complement each other to
create a more robust picture of the connections within a graph. Through-
out the chapter, we attempted to show how certain centrality measures are
relevant to different problems and used illustrative examples to demonstrate
their strengths and shortcomings. For example, the degree centrality of a
node does not take into account the influence or importance of the nodes to
which it is connected. In summary, these measures are useful in the analysis
of small-scale graphs. However, as we will see shortly, the lines begin to blur
as the graphs become larger and more intricate, as real world networks tend
to be.
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2 Modularity and Community Finding

2.1 Introduction

Graph modularity is a measure used to determine the quality of detected
communities within a network. Newman [7] defines it as a measure of the
extent to which “like is connected to like” within a network. Communities
are partitions of a graph that move nodes into separate groups based on some
sort of agreed characteristic such as node-link connectivity or edge weights.
For example, in a social network, it is likely for communities to arise among
people who attend the same schools, work at the same companies, or share
the same social circles. Therefore, a partition of a network that best defines
these communities will have a higher modularity then a partition that does
not preserve these communities. Modularity can be used as an objective
function that can be optimized to find the best number of communities at
the highest quality of modularity within each community.

2.2 Examples of Current Algorithms

Current algorithms have been proposed by many researchers such as Clauset,
Newman, Moore, Pons, Latapy, Wakita, and Tsurumi. All of these work rel-
atively well at maximizing modularity in a decent amount of time. Problems
arise as the number of nodes increases to that of hundreds of thousands of
nodes and beyond, which is common today, these algorithms become too
slow. For example, the Arxiv network’s maximum modularity was calcu-
lated by CNM in 3.6 seconds. Here is a table of performances from 2 on
various network sizes to illustrate the issue [3]:

Arxiv Internet Web nd.edu Web uk-2005 Web WebBase 2001

Nodes/Links 9k/24k 70k/351k 325k/1M 39M/783M 118M/1B

CNM .772/3.6s .692/799s .927/5034s -/- -/-

PL .757/3.3s .729/575s .895/6666s -/- -/-

WT .761/0.7s .667/62s .898/248s -/- -/-

Louvain .813/0s .781/1s .935/3s .979/738s .984/152mn

It is obvious to see that Louvain’s algorithm is much more robust in that
it can achieve a higher modularity in each scenario, but also finish in a
fraction of the time. We will be exploring this algorithm in combination
with Newman’s definition of modularity in the next section.
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2.3 Modularity Algorithm

In order to illuminate how modularities of individual communities are com-
puted, we will experiment with several different partitions of the unweighted
bowtie graph on five vertices, B5, pictured below:

1

2

3

4

5

To do these calculations, we will introduce a slight modification to New-
man’s formula for computing modularity. Newman [7] described the mod-
ularity of an unweighted network according to a predetermined community
partitioning as

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(i, j)

where m represents the total number of edges within the graph, Aij contains
the connections between nodes i and j, kikj is the product of the degrees of
nodes i and j, and δ(i, j) determines whether or not nodes i and j belong to
the same community. More specifically, δ(i, j) = 1 when i and j belong to
the same community and equals 0 otherwise. Newman’s formula is described
in terms of summations, which can have limitations. However, his formula
can be expressed quite effectively in terms of matrices, which are excellent
tools for containing vast quantities of data. The equivalent formula in terms
of matrices is

Q =
1

2m
Tr [SᵀBS] . (1)

For an unweighted network, m is similarly defined as the number of edges
within a graph. S is a matrix whose dimensions are determined by the num-
ber of nodes (rows) in a network and the number of communities (columns)
defined by a specific partitioning. The construction of S is dependent on the
predetermined partitioning of the network. Therefore, if node i belongs to
community k, we would put a 1 in the ikth entry. If node i does not belong
to community k, we would place a 0 in that spot. B is the modularity ma-
trix equivalent to Aij − kikj

2m . To find B, we subtract the probability matrix,
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whose ijth entry contains the probability
kikj
2m

that there is an edge connect-

ing nodes i and j, from the adjacency matrix. Computing the modularity of
a network according to a specific partitioning should yield a number between
−1 and 1. The modularity of a network with the optimal partitioning will
be greater than all the other modularities, while still being less than 1. We
will describe how to construct S and B using the example of the unweighted
bowtie graph on five vertices.

We will first construct the modularity matrix, B. The ijth entry of the
adjacency matrix again will contain a 1 if there exists an edge between nodes
i and j. The entries of the probability matrix are found by computing the
product of the degrees of nodes i and j and dividing that number by 2m, or
the number of edge ends, or “stubs”, within the network. For example, the
probability that nodes 1 and 3 are connected by an edge is (2 ∗ 4)/12 = 2/3.
Thus, the modularity matrix B of the bowtie graph on five vertices is

B =


0 1 1 0 0
1 0 1 0 0
1 1 0 1 1
0 0 1 0 1
0 0 1 1 0

−


1/3 1/3 2/3 1/3 1/3
1/3 1/3 2/3 1/3 1/3
2/3 2/3 4/3 2/3 2/3
1/3 1/3 2/3 1/3 1/3
1/3 1/3 2/3 1/3 1/3



=


−1/3 2/3 1/3 −1/3 −1/3
2/3 −1/3 1/3 −1/3 −1/3
1/3 1/3 −4/3 1/3 1/3
−1/3 −1/3 1/3 −1/3 2/3
−1/3 −1/3 1/3 2/3 −1/3

 .

To find the optimal partitioning, we conventionally assume there are no
community structures within the network and assign each node to its own
community. In that situation, the matrix S would look like

S =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

Once this “base” modularity is computed, we begin to shrink the number
of communities by grouping nodes into the same community and testing to
see if this grouping improves the overall modularity of the network.
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Substituting all these matrices into equation (1) will tell us the modularity
of B5 for which each node belongs to its own community. We obtain a modu-
larity of −.22, which indicates that it is unlikely that the above partitioning
effectively reflects the actual communities within the network. Recall that
once you compute the modularity matrix B, the only adjustment that needs
to be made to calculate the modularities of other partitions is to the S ma-
trix. Observe what happens to the matrix S when we group nodes 1 and 2
within the same community. We obtain the matrix

S =


1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,
which, upon entering S into the modularity formula, would yield a modu-
larity of −.11. This number is greater than the modularity calculated when
each node belonged to its own community, suggesting that the above par-
titioning is superior to our initial partitioning. Going forward, we would
continue to group nodes into the same community to see how the modular-
ity is effected at each iteration. If we were to continue with the calculations,
we would find that the optimal partitioning of the network occurs when
nodes 1,2, and 3 belong to the same community and when 4 and 5 belong
to a community.

This would correspond to the following S matrix:

S =


1 0
1 0
1 0
0 1
0 1

 .
This partitioning produces a modularity of .11. Given the simplicity and the
symmetry of the bowtie graph on five vertices, it is unsuprising that it is dif-
ficult to define communities within the network. As the graph grows larger
and more complicated, however, calculating the modularity of different par-
titionings of the network can offer useful information as to the connectivity
of the network and who the principal players are. In the following section,
we will explore what happens when we add edge weights to the connections
between two nodes. See the Table on Summary of Modularities to compare
how different partitions of B5 result in different modularities.
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We can modify our algorithm slightly in order to use it on weighted graphs.
The steps will be the same; we will group nodes together in different commu-
nities until we obtain an optimized partition based on modularity. Only our
interpretation of m and ki will change. In the unweighted graph calculation,
m was defined as the total number of edges and kikj was the product of the
degree of nodes i and j. For a weighted graph, m is the the sum of all the
edge weights of the graph and k is the sum of the edge weights surrounding
a node. So, kikj is the product of edge weights surrounding nodes i and j.
The entires of the adjacency matrix will also contain the actual edge weights
between nodes. We will show an example using a weighted version of the
five node bowtie graph, displayed below.

The adjacency matrix of this weighted bowtie is

A =


0 3 7 0 0
3 0 6 0 0
7 6 0 2 1
0 0 2 1 4
0 0 1 4 1

 .
Now that we have the graph’adjacency matrix, we can calculate the

modularity matrix, B. By the assigned weights of the bowtie, m = 23. The
matrix B is defined the same as in the previous unweighted bowtie calcula-
tion. It is the difference between the adjacency matrix and the probability

matrix, whose entries are the probabilities
kikj
2m

. This is shown below.
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B =


0 3 7 0 0
3 0 6 0 0
7 6 0 2 1
0 0 2 1 4
0 0 1 4 1

−


100/46 90/46 160/46 60/46 50/46
90/46 81/46 144/46 54/46 45/46
160/46 144/46 256/46 96/46 80/46
60/46 54/46 96/46 36/46 30/46
50/46 45/46 80/46 30/46 25/46



=


−100/46 −48/46 −162/46 −60/46 −50/46

48/46 −81/46 132/46 −54/46 −45/46
162/46 132/46 −256/46 −4/46 −34/46
−60/46 −54/46 −4/46 −36/46 154/46
−50/46 −45/46 −34/46 154/46 −25/46

 .
From this point on, the steps are the same as before. We start by

assuming that each node is in its own community. So, S1 is the identity
matrix of five dimensions. We apply our algorithm for modularity, which is
Q = 1

2m Tr [SᵀBS]. The modularity for this partition is −.24, which is very
close to what we had for this grouping in the unweighted graph as well. The
succeeding steps entail just redefining the S matrix to match the community
distribution being investigated. In the end, the optimal modularity value is
obtained from two communities. Nodes 1 and 2 are in the same community
and nodes 3, 4, and 5 are in the same community. No other partitions give
us a greater modularity value. This is the same optimal grouping obtained
by the unweighted graph as well.

2.4 Summary of Modularities for Unweighted B5

Partition Modularity

{1},{2},{3},{4},{5} -.22

{1,2},{3},{4},{5} -.11

{1,3},{2},{4},{5} -.17

{1,2,3},{4},{5} 0

{1,2},{3,4},{5} -.056

{1,2},{3},{4,5} 0

{1,2},{3,5},{4} -.056

{1,2,3,4},{5} -.056

{1,2,3,5},{4} -.056

{1,2,3},{4,5} .11
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2.5 Louvain’s Modularity Algorithm

Louvain’s algorithm is a two phase process in which each is iterated repeat-
edly.

We start in phase one with a graph of N nodes. Each node is its own
community. Within the first phase each node, i, is iterated over and its
neighbors are examined for the change in modularity if node i were to be
placed in its neighbors’ communities. The grouping that produces the max-
imum positive modularity gain is performed. If no positive gain exists, then
node i remains in its current community. This will quickly start partitioning
nodes into like communities. This stops once no individual can be moved to
increase modularity. The change in modularity is calculated with the given
formula, which is expressed by Blondel et. al [3]:

∆Q =

[∑
in +kCi
2m

−
(∑

tot +ki
2m

)2
]
−

[∑
in

2m
−
(∑

tot

2m

)2

−
(
ki
2m

)2
]

=
kCi
2m
−
∑

tot ·ki
2m2

,

where
∑

in is the sum of the weights of the links inside of a community C,
kCi is the sum of the weights of the links from i to nodes in C,

∑
tot is the

sum of the weights of the links incident to the nodes in C, ki is the sum of
the weights of the links incident to node i, and m is the sum of the weights
of all the links in the network.

In phase two, a new network is built whose nodes are now the communities
found in the previous phase. To accomplish this, the weights of the links be-
tween the new nodes are given by the sum of the weight of the links between
nodes in the corresponding two communities. Links between nodes within
the same community lead to self-loops for this node in the new network. We
can then apply the steps in the first phase on this new network and repeat
the phases until modularity can no longer increase.

Louvain listed several advantages of this algorithm over previous ones:

1. The steps are intuitive and easy to implement.

2. The outcome is unsupervised (no human input) and therefore not bi-
ased.
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3. The algorithm is extremely fast; can be completed in linear time.

4. Past algorithms have trouble finding small communities due to resolu-
tion problems. This algorithm does not have this problem due to its
bottom-up approach.

Let us now walk through the first couple steps of the algorithm to demon-
strate where to extract the correct information from this graph:

At the start of algorithm, each node is treated as its own community. Define
m = 23 as it is the sum of the edge weights in the network. Let us start with
the community that contains node 1. This is connected to the communities
that hold node 2 and node 3. We will first calculate ∆Q for 1→ 2:

1

46

[(
0 + 3− 192

46

)
−
(

0− 92

46
− 102

46

)]
= −0.020.

Next, we will calculate ∆Q for 1→ 3:

1

46

[(
0 + 7− 262

46

)
−
(

0− 162

46
− 102

46

)]
= 0.001.

We have calculated ∆Q for all neighbors of node 1. Since the maximum
positive gain occurs when node 1 joins node 3, we will make them a commu-
nity of their own. See the table below for the next calculations that would
occur in sequence.

From → To ∆Q

{1} → {2} -0.020

{1} → {3} 0.001

{2} → {1,3} 0.034

{3} → {4} -0.047

{3} → {5} -0.059

{4} → {1,2,3} -0.047

{4} → {5} 0.059

{5} → {1,2,3} -0.068
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This algorithm results in two distinct communities {{1, 2, 3}, {4, 5}}. Phase
two results in no increase of modularity so these are the final partitions.

The algorithm works, or can be adapted, for directed and undirected graphs.
It works for weighted and unweighted graphs. In an unweighted graph, one
would treat every edge as having a weight of 1.

2.6 Louvain’s Algorithm for Directed Graphs

For directed graphs, the behavior is exactly the same. There are only a
few changes that need to be made to the algorithm. These changes were
described by Nicolas Dugue and Anthony Perez [8].For the undirected case,

∆Q =
kCi
2m
−
∑

tot ·ki
2m2

.

This will slightly change to the following for the directed case:

∆Qd =
kCi
m
−

[
kouti ·

∑in
tot +kini ·

∑out
tot

m2

]

where
∑in

tot and
∑out

tot represents the number in- and out-going edges respec-
tively in regards to community C. Essentially, this change now accounts for
the fact that not only a relationship exists between two nodes, but also the
direction of that relationship. The same process holds true when applying
Louvain’s algorithm for directed graphs.

2.7 Comparing Effects of Weighted Edges

We will now observe the effect of weighted edges in hard community de-
tection and modularity. In Figure (4), we have the unweighted seven node
bowtie graph. Using the process described in this section, we can determine
that the graph must be split into two communities to achieve a maximum
modularity of 0.21875.
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Now, we will apply weights to the edges in this contrived example to prove
our point.

1 1

1 10 8

9

6

7

1

2

3

4

5

7

6

We determined the modularity of this graph is 0.108978. The modularity
was cut in half, but, due the weights of the edges, it was more appropriate
to split the network into three communities. This must be done to maintain
the strong relationships.

3

7

6

2.8 Soft-Community Finding and SVD

Singular value decomposition is a method to soft-partition networks through
matrix factorization. Soft-partitioning is a useful tool in network commu-
nity detection because it, unlike hard-partitioning, allows for the existence
of overlapping communities. Recall that when we hard-partition a network,
we assign each node to exactly one community. This can be effective when
trying to understand the general connectivity of a network, but presents
challenges when trying to partition a network comprised of nodes that be-
long equally to more than one community. We saw this when attempting
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to optimize the modularity of the bowtie graph on five nodes; the center
node was torn between the communities formed by each half of the bowtie.
Although the bowtie graph is a relatively trivial example, especially when
considering the complexity of most real-world networks, it is revealing of the
drawbacks of hard partitioning. This is where soft-partitioning and singular
value decomposition comes in handy.

Matrix factorization lends itself to a wide range of applications, in large part
because the operation is not exclusive to square matrices. In general terms,
when we define the singular value decomposition of a matrix A, we factor A
into the product of three matrices: A = UΣV T . Consequently, when A is
an m× n matrix, U is necessarily an m×m matrix, Σ is an m× n matrix,
and V T is an n × n matrix. Note that U and V T are always square ma-
trices. This process translates almost seamlessly when applied to networks,
but with a slight modification which we will discuss momentarily. For the
sake of comprehension, however, we will demonstrate how the singular value
decomposition is executed using the example of the 3× 2 matrix

A =

 7 1
0 0
5 5

 .
It is fitting to discuss matrix Σ first, as it hosts the singular values of matrix
A. Since matrix A has a rank of 2, the first 2 diagonal entries of Σ will
contain the singular values of A, which are found by taking the square root
of the positive eigenvalues of the square matrix ATA. In this case, those
eigenvalues are λ1 = 90 and λ2 = 10 (disregarding the third eigenvalue of
ATA, λ3 = 0), corresponding to singular values σ1 =

√
90 = 3

√
10 and

σ2 =
√

10. The remaining entries are populated with zeros. Thus,

Σ =

 3
√

10 0

0
√

10
0 0

 .
The matrix U is formed by computing the normalized eigenvectors of the
square matrix AAT and assigning them to the columns of U . We will include
the eigenvector corresponding to the eigenvalue λ3 = 0 because we want
the columns of U to form a basis of R3. This implies that the vectors of
U are orthonormal. Matrix V T is constructed by finding the normalized
eigenvectors of the square matrix ATA, taking the transpose of each vector
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and assigning each transposed vector to the rows of V T . Observe that the
row vectors of V T are likewise orthonormal. As a result,

U =


1√
2
−1√
2

0

0 0 1
1√
2

1√
2

0

 , and V T =

[
2√
5

1√
5

−1√
5

2√
5

]
.

Finally, the singular value decomposition of matrix A is

A =

 7 1
0 0
5 5

 =


1√
2
−1√
2

0

0 0 1
1√
2

1√
2

0


 3
√

10 0

0
√

10
0 0

[ 2√
5

1√
5

−1√
5

2√
5

]
.

Recall the matrix A is a rank 2 matrix, since it has at most two linearly
independent vectors. Considering the rank of a matrix that is being fac-
tored into its singular value decomposition can be useful, particularly when
analyzing large matrices. In many situations, we may want to simply give
an approximation of a matrix of rank r by describing it as the sum of rank
1 matrices σ1 ~u1 ~v1

T + σ2 ~u2 ~v2
T + · · ·+ σj ~uj ~vj

T , where j ≤ r. We would call
this sum a rank j approximation of a matrix A. It is possible that a rank j
approximation gives a pretty good approximation of matrix A, even when j
is significantly smaller than r.

In the world of networks, we need to introduce a special type of matrix called
the Laplacian, denoted L. The Laplacian is a modification to the adjacency
matrix of a graph, made necessary by the need to compute eigenvalues and
eigenvectors of the matrix ATA and AAT . Were we to try to factor the
adjacency matrix of a network, we would find that ATA and AAT are not
invertible matrices, due to the zero entries along the main diagonal. Thus,
we construct the Laplacian matrix by adding the adjacency matrix of a
graph, A, with the matrix D. Matrix D hosts the total degrees of each node
along the main diagonal and contains zeros everywhere else.

For this exploration, consider the bowtie graph on seven nodes. The Lapla-

35



cian matrix corresponding to B7 would look like

L =



2 1 0 1 0 0 0
1 2 1 0 0 0 0
0 1 2 1 0 0 0
1 0 1 4 1 0 1
0 0 0 1 2 1 0
0 0 0 0 1 2 1
0 0 0 1 0 1 2


.

LTL and LLT are both invertible matrices, and thus will pose no problem
when computing eigenvalues and eigenvectors.

Suppose wanted a rank 2 approximation of matrix L. Thus, we will only
be using the two largest eigenvalues to compute our singular values and the
matrices U , Σ, and V T . Allowing Mathematica to do the heavy-lifting, we
observe that the matrices U , Σ, and V T are

U =



−.28 .35
−.16 .5
−.28 .35
−.79 0
−.28 −.35
−.16 −.5
−.28 −.35


, Σ =

[
5.41 0

0 3.41

]
,

V T =

[
−.28 −.16 −.28 −.79 −.28 −.16 −.28
−.35 .5 .35 0 −.35 −.5 −.35

]
,

resulting in the rank 2 approximation

L ≈



.85 .85 .85 1.21 0 −.35 0

.85 1 .85 .71 −.35 −.71 −.35

.85 .85 .85 1.21 0 −.35 0
1.21 .71 1.21 3.41 1.21 .71 1.21

0 −.35 0 1.21 .85 .85 .85
−.35 −.71 −.35 .71 .85 1 .85

0 −.35 0 1.21 .85 .85 .85


.

Clearly, a rank 2 approximation is not the best approximation we can get,
but its advantage lies in the fact that the size of matrices U , Σ, and V T
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have smaller dimensions than those of a higher rank approximation. This
has important applications in data storage and image compression.

While a rank 2 singular value decomposition of L has shortcomings, it opens
the door for another exploration: cosine similarity. Constructing the cosine
similarity matrix is what will ultimately allow us to discern soft community
structures within the network. The cosine similarity matrix is constructed
by find the matrix products UΣ and V Σ (note here that we are using matrix
V , which is simply the transpose of V T ) and then taking the dot products.
The singular value decomposition of the 7-by-7 Laplacian matrix, L, is given
by A = UΣV t, where Σ is a 6-by-6 diagonal matrix, whose diagonal entries
are the positive singular values of L. The matrix U is 7-by-6 whose columns,
known as the left singular vectors of L, are orthonormal and formed by
finding the eigenvectors of LLt. Lastly, V has dimensions 7-by-6. It too has
has orthonormal column vectors, known as the right-singular vectors of L,
which can be found by computing the eigenvectors of LtL. We may write

V = [−→v 1,
−→v 2, · · · −→v 6],

where each −→v i ∈ R7, in which case

V t =


−→v t1−→v t2

...
−→v 6


Furthermore,

U = [−→u 1,
−→u 2, · · · −→u 6].

where each −→u i ∈ R7

If we retain only the first two singular values when constructing Σ, then the
dimensions of the revised matrices, Σ, U , and V , are 2-by-2, 7-by-2, and
2-by-7, respectively. In this case the product UΣ has dimension 7-by-2 and
can be expressed as

UΣ =


−→c 1−→c 2

...
−→c 7

 ,
where each −→c i belongs to R2.
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Using this rank-two approximation, L̃, we obtain

L̃ = UΣV t

=


−→c 1−→c 2

...
−→c 7

 ·
[−→v t1−→v t2

]

=


c11
−→v t1 + c12

−→v t2
c21
−→v t1 + c22

−→v t2
c31
−→v t1 + c32

−→v t2
...

c71
−→v t1 + c72

−→v t2

 .

By the orthogonality property of the columns of V , we observe that the
inner product of rows k and m of L̃ is given by(
ck1
−→v t1 + ck2

−→v t2
)
•
(
cm1
−→v t1 + cm2

−→v t2
)

= ck1
−→v t1 • cm1

−→v t1 + ck1
−→v t1 • cm2

−→v t2
+ ck2

−→v t2 • cm1
−→v t1 + ck2

−→v t2 • cm2
−→v t2

= ck1cm1
−→v t1 • −→v t1 + ck2cm2

−→v t2 • −→v t2
= −→c k • −→c m.

Each vector −→c i can be viewed as a point in R2 corresponding to node i. It
also records the coefficients of row i of L̃ relative to the orthonormal vectors
−→v 1 and −→v 2 in R7. If −→c k•−→c m > 0, then −→c k and −→c m are located in the same
quadrant and hence the corresponding nodes identify with the same com-
munity. Otherwise, the points fall in different quadrants and corresponding
nodes identify with different communities. In the case of the seven-node
bow tie and a rank 2 approximation of L, we have

−→c 1−→c 2−→c 3−→c 4−→c 5−→c 6−→c 7


=



−1.52 1.2071
−.89 1.707
−1.52 1.2071
−4.3 0
−1.52 −1.2071
−.89 −1.707
−1.52 −1.2071


We see that nodes 1-3 identify with points in the second quadrant, node 4
with a point on the negative horizontal axis, and nodes 5-7 with points in
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the third quadrant. In the general case of a rank r decomposition, each −→c i
belongs to Rr, and each community corresponds to a particular hyperoctant.
Different metrics can be used to quantify the extent of “separation” between
any two nodes, k and m. One involves determining the cosine of the angle
between the vectors −→c k and −→c m. If this value is negative, then these two
vectors fall in different hyperoctants, and nodes k and m belong different
communities.

Now, here is a another observation. Each diagonal entry of L is determined
by the degree of the corresponding node. Hence, if two nodes k and m are
directly connected, then the dot product of the corresponding rows is at
least the sum of the nodes’ degrees. On the other hand if the nodes are not
directly connected to one another but instead through a third, intermediate
node, then, owing to the symmetric nature of L, the dot product of rows k
and m is the number of such intermediate nodes. In light of this fact and
the preceding results, we see that the dot product −→c k •−→c m records relative
proximity between nodes k and m.
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3 Real Examples of Network Analysis

Now, we will use the topics and ideas we have explored earlier in the paper
to analyze three applications of network analysis. These examples will each
take a unique approach. The goal will be to interpret the results of the
various measurements for the reader.

3.1 Grand Valley’s Sidewalk Network

Grand Valley’s campus can easily be represented as a network of its side-
walks. We collected this dataset ourselves by identifying the main exits to
buildings and using map software to find the distance between buildings
using yards as our units. So, the nodes are the buildings on campus and
the edges are the sidewalks that directly connect various buildings. To sim-
plify the network, even though you can technically walk from Mackinac Hall
straight to the Kirkhof Center without entering a single building along the
walk, these nodes would not be directly connected, because the walker would
have to pass by many other buildings to get there. The major rule of thumb
when creating the dataset was: if a walker leaving building A must pass
another building, B, to get to the destination, C, then A and C should not
be directly connected. Sometimes this rule is unclear because the setup of
buildings on campus is a bit convoluted.
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Figure 7: Grand Valley’s Allendale Campus
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Figure 8: Grand Valley’s Allendale Campus Graph with inverse edge labels
scaled by 1000 and rounded for easier display. A higher number represents
a stronger relationship.

41



Figure (7) shows Grand Valley’s Allendale Campus1. It is cropped to display
only the classroom buildings. The network analysis consists only of those
nodes. By using the distance mapping software along the sidewalks and
creating a weighted edgelist, we get the following representation in Figure
(8).

For this network, a strong relationship between two nodes is defined as
the inverse of the distance between them. We will use inverse weights for
measures of centrality and modularity to accurately find the most central
nodes and the most modular communities. We will use the normal distances
as weights when we begin to find the shortest path between certain nodes
and finding the shortest tour through the graph.

Centrality
All previously discussed measures of centrality were calculated for this net-
work with the exception of Katz centrality. We were unable to find an
implemented method for calculating Katz for weighted graphs within Math-
ematica. Through observing these major measures of centrality, we can
conclude Mackinac Hall is a very influential place on campus (its eigen-
vector and PageRank centralities are the highest). Also, based on degree,
closeness, and betweenness centralities, we can conclude that Zumberge is
very central to the network in terms of physical location.

Degree Centrality

1https://www.gvsu.edu/homepage/files/pdf/maps/allendale.pdf
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Figure 9: Bar chart of node degree centrality

Closeness Centrality
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Figure 10: Bar chart of node closeness centrality
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Betweenness Centrality
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Figure 11: Bar chart of node betweenness centrality (nodes with values of
zero are omitted.)

Eigenvector Centrality
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Figure 12: Bar chart of node eigenvector centrality

PageRank Centrality
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Figure 13: Bar chart of node PageRank centrality
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Hard Community Detection
Using modularity, we can partition this network into communities of build-
ings. The implementation we used does take edge weights into account when
calculating the overall modularity of the set of communities. Since the edges
and edge weights relied on the physical connection of buildings by sidewalks,
it makes sense that hard community detection splits the nodes into roughly
North, East, West, South, and Central campus. The best achievable modu-
larity was about 0.623, which gives us five distinct communities within the
network. See Figure (14) for reference.

Manitou

LakerStore

Loutit_Henry

Bridge

STU

CookDewitt

PAC

LakeHuron

LakeMichigan

Calder

Niemeyer

Figure 14: Campus Communities

Soft Community Detection

Figure (15) represents a rank 10 singular value decomposition approximation
that is then reordered by cosine similarity. We then plot this on a matrix
plot where an orange block represents a strong cosine similarity and a blue
block represents a weak cosine similarity. The reordering moves similar
nodes closer together toward the diagonal.

While generating this plot, we chose rank 10 because this maintains 70
percent of the singular values in the singular value decomposition. This them
maps to about 10 soft communities within the network. It is easy to see the
hard communities within this plot along with more information regarding
how some nodes could belong in multiple communities. This occurs for nodes
such as the ones that are contained within the block from Loutit Henry to
Ausable. Zumberge is not in the same community as Lib, Kirkhof, and PAC
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in the hard communities, but within the soft communities, there still exists
a relationship. This can be verified by the relatively close proximity that
Zumberge is to Kirkhof (just across the pond).
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Figure 15: Soft Community Detection using Singular Value Decomposition

Shortest Paths and Tours
Since we decided to represent GV’s campus as a network where the edge
weights are based on actual distances, this led us to analyze the network
as a Hamiltonian graph. This property means that a path exists where
each node will be visited only once. Finding the shortest path that satisfies
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that criterion is generally computationally intractable for large networks,
but ours is small enough to find such a path (see Figure (17)). This tour
is approximately 1.7 miles in length. A possible use or exploration for this
type of analysis would be for GVSU to optimize the route tours should
take to get done in the shortest amount of time to allow more tours in
the schedule. Another interesting feature that can be extracted from our
network is a shortest path between two nodes. Again, since the edge weights
have accurate distances associated with them, we can provide an accurate
path between two buildings to optimize travel time. A possible user or
exploration for this calculation would be for new students that need to find
the best way around campus (see Figure (16)).
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Figure 16: The shortest path from Kirkhof to Mackinac
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Figure 17: The shortest tour around campus
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3.2 Rhesus Monkey’s Cortex Network

The brain- one of the greatest mysteries of the world. It is what makes us,
us. It essentialness to life is undeniable and the hope one day is to under-
stand it. However, the human brain is extremely hard to study, so other
closely related animals’ brains are tested instead. The hope is that by ex-
amining these mammals, the understanding of the human brain can grow.
In a study conducted by Markoz et. al [10] , macquad rhesus monkies were
injected with retrograde tracers into their cortex. The tracers are taken up
by axons that are connected to the injection site and transferred to each part
of the brain that interacts with that specific injection site. The mcquade
cortex (the outer part of the brain) has 91 recognized areas in total, so only
a subset were injected to. These injection sites and the areas they project to

were modeled by a directed network. Each area of the brain was represented
by a node on a directed graph. However, the network was paired down to
only include the 29 areas injected into by the advice of Dr. Markov [11]. A
graphical representation of the network is shown in Figure 19 18 below. The
final adjacency matrix was a 29 x 29 square, unweighted matrix. Each node
represents a different area of the cortex and each edge represents a directed
interaction between two areas. From this network, different centrality mea-
sures were examined in addition to performing hard and soft community
finding.
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Figure 18: Network of Areas in the Macquade Cortex

The first centrality measure examined for this network was Betweenness
Centrality. As mentioned earlier, betweenness centrality is a measure of
how often a node is passed through. It quantifies how often a node must be
included in a path in order to reach another node. Figure 2 is a graph of
the betweenness centrality of each of the 29 nodes, shown below.

On the graph, area 7A of the graph had the highest betweenness cen-
trality. 7A is an integration center of the brain [12]. This means that its
function is to interpret signals coming from many different areas and activate
the appropriate neurons that should respond to these signals. For example,
area 7A is related to many visual and polysnesory areas. So, many different
areas of the brain are going to have neurons that synapse on this area. It is
a crucial ”middle man” for the brain. Area 5 is also an integration center,
but it has the lowest betweenness centrality. This may seem contradictory,
but it is not. Area 5 is the somatosensory association cortex [12]. Therefore,
it only receives input from Area 2, the primary somatosensory cortex. An
association area is a region that interprets signals from only one sensory re-
gion of the brain. So, even though it is an integration center, area 5 will not
be a ”middle man” for many neural pathways. Signals will no need to pass
through it to reach a destination, so it should have a very low betweenness
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Figure 19: Graph of Betweenness Centrality

centrality.

The second centrality measure studied was PageRank Centrality. PageRank
centrality bases a node’s importance on the importance of and number of
nodes its connected to. So, it is a great measure of the overall significance
of a node. The figure below is a graph the Betweenness Centrality of each
node.

Even though there are slight differences, the pagerank values of each node
are relatively the same and extremely low. This signifies that all the areas of
the cortex have similar importance. This seems logical; all areas of the brain
are needed to function properly. Also,the brain is extremely interconnected.
Most areas are interacting with each other due to the complexity of the
functions it needs to perform. So, since PageRank proportionally distributes
a node’s importance amongst the nodes its connected to, it makes sense the
low values of each node. Each area of the brain interacts with many others,
so PageRank values are low due to this distribution of influence.

Three communities were found when the data was analyzed by hard com-
munity finding techniques. The three communities are listed below, and an
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Figure 20: Graph of PageRank Centrality

image of the groupings is shown in Figure 22 :

1: V1, V2, V4, TEO, DP, STPr, STPi, STPc, PBr, TEpd, 8L, 10, MT

2: F5, 8M, 7A, 2, 5, 7B, 24c, F1, F2, F7, ProM, 9-46v, 7M

3: 9-46d, 46D, 8B

The communities are grouped together based on their function and sen-
sory modality. In community 1, areas like V1 and V2 are part of the primary
visual cortex. This information must be transferred to other areas for greater
discernment. STP stands for superior temporal polysensory area. It is in-
volved in visospatial and visomotion behavior [13]. It is logical that these
ares would be contained in a single community because they deal mostly
with vision. The second community contains regions mostly situated in
the frontal and prefrontal cortex. These areas deal complex functions like
planning and responses to difficult problems [14]. Areas in here must com-
municate with each other more frequently in order to create an adequate
response and think clearly. There is less need to communicate with other
areas that deal strictly with motor or sensory functions. The third and fi-
nal community is small, and seems as though it could be grouped with the
second. It has areas contained in the prefrontal cortex as well. However,
a lot of the projections found for region 9-46D were new found projections
[9]. These new found projections matched a lot of the known interactions
of area 8M. So, due to the strong similarity between the two regions, it was
must have been advantageous to group them into a different communities
(as opposed to adding them to community 2). The modularity value for
three communities was higher than the modularity for only two.
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Figure 21: Hard Communities

When the network was analyzed through soft community finding, about 20
communities arose. Figure 23 is a rank 20 singular value decomposition that
is modeled by cosine similarity. As mentioned earlier, the brain is extremely
interconnected and no areas are very isolated. An area could easily belong
to many communities because it has neurons that synapse on many other
areas. For example, it can be seen that F1 and area 5 are very closely related.
The color on the heat plot connecting them is very dark. This is expected
because they were in the same community for hard community detection.
However, F5 and 8M could also potentially be in the same community. Their
interaction is also very strong.

Overall, the analysis of the Rhesus Cortex proved the importance and
interconnectedness of all areas of the brain.

3.3 Madrid Train Bombing Terrorist Network

On March 14, 2004, ten explosions occurred simultaneously upon four com-
muter trains while en route to Atocha station in Madrid, Spain’s capital
city. Claiming 192 lives, the attack was the deadliest in Spanish history,
and the worst to have occurred in Europe in fifteen years. Politicians and
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Figure 22: Soft COmmunities

the media were quick to accuse the ETA, a well-known homegrown terrorist
group from the Basque Country in northern Spain, but as evidence rolled
in it became increasingly clear that the attack was likely connected to an
outside terrorist organization. After several years of investigation, a Spanish
court found 21 people guilty of either masterminding the attack, executing
it, or aiding in the preparation of the attacks.

The following network, described in Brian Hayes’s “Connecting the Dots:
Can the Tools of Graph Theory and Social-Network Studies Unravel the
Next Big Plot” published by American Scientist, illustrates the relationships
or interactions between 70 individuals presumed to have some connection
to the attack. These connections were made according to a range of cri-
teria varying from friendships or familial ties, interactions with suspected
terrorists or terrorist sympathizers, co-participants in war or relationships
to al-Qaeda or Osama Bin Laden. Consequently, many of the connections
are coincidental and do not necessarily imply the direct involvement of each
of the individuals in the network in the advancement of the plot. These
nodes are not superfluous, however, as they help to paint a more intricate
picture of the goings-on behind a terror attack of this scale.
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Figure 23: Community structures

Figure 28 displays the detected community structures within the network
and is particularly helpful in understanding how the data was compiled. We
can see that there are three principal communities to which the vast majority
of nodes belong. Additionally, there are 13 dissociated nodes each belonging
to their own community. These nodes largely correspond to individuals who
were not immediately involved in the attack, but had been suspected of ter-
rorist activity or observed making comments that suggested that they were
sympathetic to terrorism. Ali Amrous, the bottom left-most node, for ex-
ample, had been detained and interrogated in San Sebastian for threatening
an attack on Madrid. He was also suspected of being a member of al-Qaeda,
although there was not enough evidence to suppose that he knew of the at-
tack beforehand. There are some inconsistencies though, particularly when
we focus our attention on the Almallah brothers, who were both accused of
hosting meetings in an apartment that they owned in Madrid in which they
provided resources and information to al-Qaeda recruits. There is evidence
that suggests that they had links to a number of the terrorists charged with
having committed the attack. These discrepancies may be explained by the
way in which the data was collected and organized. It is also possible that
at the time this
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Figure 24: Bar chart of node betweenness centrality

Betweenness centrality is a measure that quantifies how many shortest paths
from node i to node j pass through node c. It follows that a node with a high
betweenness score would be central to the network in that many of the other
nodes in the network would be connected to each other through it. In the
context of a terrorist network, an individual with a high betweenness score
would be someone who is directly connected to many people who are not
themselves directly connected. They are likely a critical component of the
scheme or, in terms of communities, a linking factor between communities.
Naima Oulad Akcha, the only woman charged in the case, was the sister of
two prime suspects, Mohamed and Rachid Oulad Akcha, who were thought
to have helped place the bombs on the trains. Imad Eddin Barakat, better
known as Abu Dahdah, has a high betweenness score likely due to his elite
role in the Madrid faction of al-Qaeda. Thus, his connections to others
within the network may not be consequence of a direct relationship with
them, but instead co-participance in a terror organization or previous acts
of terror.

56



It is unsurprising that Jamal Zougam, charged with helping to mastermind
and execute the attack for which he was sentenced to 40,000 years in prison,
has the highest betweenness centrality. He was the connection between
young amenable Moroccan migrants and al-Qaeda and was responsible for
developing the terrorist cell based in Madrid. Among other unsurprising
results, Mohamed Chaoui, half-brother to Zougam, was another principal
actor in the attack. The brothers, along with their business parter Mohamed
Bekkali, were arrested when a mobile phone that was supposed to have
detonated one of bombs and failed to do so was discovered.
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Figure 25: Bar chart of node closeness centrality
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Figure 26: Bar chart of node degree centrality

Figure 26 produces similar results to the other measures. Jamal Zougam
has the largest number of connections within the network, due to his role in
implementing the attack as well as his position as recruiter.
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Figure 27: Bar chart of node eigenvector centrality

59



Ja
m
al
Zo
ug
am

M
oh
am
ed
B
ek
ka
li

M
oh
am
ed
C
ha
ou
i

V
in
ay
K
ho
ly

S
ur
es
h
K
um
ar

M
oh
am
ed
C
he
da
di

Im
ad
E
dd
in
B
ar
ak
at

A
bd
el
az
iz
B
en
ya
ic
h

A
bu
A
bd
er
ra
ha
m
e

O
m
ar
D
he
ga
ye
s

A
m
er
A
zi
zi

A
bu
M
us
ad
A
ls
ak
ao
ui

M
oh
am
ed
A
tt
a

R
am
zi
B
in
al
sh
ib
h

M
oh
am
ed
B
el
fa
tm
i

S
ai
d
B
ah
aj
i

A
lí
A
m
ro
us

G
al
eb
K
al
aj
e

A
bd
er
ra
hi
m
Zb
ak
h

Fa
ri
d
O
ul
ad
A
li

Jo
sé
E
m
ili
o
S
uá
re
z

K
ha
lid
O
ul
ed
A
kc
ha

R
af
a
Zu
he
r

N
ai
m
a
O
ul
ad
A
kc
ha

A
bd
el
ka
ri
m
el
M
ej
ja
ti

A
bd
el
ha
la
k
B
en
ta
ss
er

A
nw
ar
A
dn
an
A
hm
ad

B
as
el
G
ha
yo
un

Fa
is
al
A
llu
ch

S
B
A
bd
el
m
aj
id
Fa
kh
et

Ja
m
al
A
hm
id
an

S
ai
d
A
hm
id
an

H
am
id
A
hm
id
an

M
us
ta
fa
A
hm
id
an

A
nt
on
io
To
ro

M
oh
am
ed
O
ul
ad
A
kc
ha

R
ac
hi
d
O
ul
ad
A
kc
ha

M
am
ou
n
D
ar
ka
za
nl
i

Fo
ua
d
E
l M
or
ab
it
A
ng
ha
r

A
bd
el
ua
hi
d
B
er
ra
k

S
ai
d
B
er
ra
k

W
aa
ni
d
A
lta
ra
ki
A
lm
as
ri

A
bd
de
na
bi
K
ou
jm
a

O
tm
an
E
l G
na
ut

A
bd
el
ila
h
el
Fo
ua
d

M
oh
am
ad
B
ar
d
D
di
n
A
kk
ab

A
bu
Zu
ba
id
ah

S
an
el
S
je
ki
ri
ka

P
ar
lin
du
m
ga
n
S
ir
eg
ar

E
l H
em
ir

A
nu
ar
A
sr
i R
ifa
at

R
ac
hi
d
A
dl
i

G
ha
so
ub
A
l A
lb
ra
sh

S
ai
d
C
he
da
di

M
oh
am
ed
B
ah
ai
ah

Ta
ys
ir
A
lo
un
y

"O
M
. O
th
m
an
"A
bu

S
ha
ku
r

D
ri
ss
C
he
bl
i

A
bd
ul
Fa
ta
l

M
oh
am
ed
E
l E
gi
pc
io

N
as
re
di
ne
B
ou
sh
oa

S
em
aa
n
G
ab
y
E
id

E
m
ili
o
Ll
am
o

Iv
an
G
ra
na
do
s

R
au
l G
on
za
le
s
P
er
ez

E
l G
ita
ni
llo

M
ou
ta
z
A
lm
al
la
h

M
oh
am
ed
A
lm
al
la
h

Y
ou
se
f H
ic
hm
an

0.00

0.01

0.02

0.03

0.04

Figure 28: Bar chart of PageRank centralities

3.4 Spectrum EEG Network

This is a 19-node, undirected network of EEG recording locations inside
the human brain. Each of the three networks provides information about
network dynamics over a 2.5 second period in a 2-minute EEG recording that
contains an epileptic seizure. The windows are chosen at approximately 60
sec, 105, sec, and 115 sec into the 2 minute recording.

The edge weights are a quantity known as ”average mean square coher-
ence.” There’s a lot going on here, but, in essence, the edge weight (matrix
entry) describes the extent to which a linear relationship exists between the
corresponding channels’ signals during the 2.5 second window. Think of it
as a ”correlation coefficient” if you’ve every studied linear regression or lines
of best fit. These values were averaged over a frequency band of 125 to 250
hertz.
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Figure 29: Graphical representation of EEG recording locations

This EEG network changed as time progressed. As mentioned, the
recording was taken over a time span of two minutes and the three windows
show the beginning, middle, and end of a seizure. Due to this seizure, the
activity of areas of the brain changed over time, which altered the properties
of the network. Consequently, the three different windows of the network
have different soft communities.
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Figure 30: Soft Communities at 60 Sec

In 30, it can be seen that there are about two definite larger community
structures, and many smaller ones. Any area that pertains to a number
in the ”30’s” is not very related to an area in the ”40’s”. All the nodes
seems to be more connected to areas near them, and activity is kept towards
neighboring areas. However, this changes as the seizure progresses and nears
its peak.
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Figure 31: Soft Communities at 105 Sec

In Figure 31 there are quite a few more communities that seem to arise
by the middle of the seizure at 105seconds. Four distinct larger communities
can be easily spotted, and nodes’ influences are changing. For example, area
34C was not related to areas 43E-46E at the beginning of the seizure, but
now it is highly related to those areas. Area 42d also has greater influence
on different areas of the brain than in the 60 second window. A select few
areas of the brain area affecting many areas around them, which is expected
with a seizure. By looking at the relative communities that form based on
the cosine similarity images, it can be discovered which nodes are playing
a large roll in the seizure itself. These seems to include areas 34c and 42d
since they connectivity to almost every other area of the brain increased.
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Figure 32: Soft Communities at 115 Sec

Figure 32 correlated with the end of the seizure. The connectivity pat-
terns are similar to those in the network at 105 seconds. The activity of
areas 42d and 34C are still high; they are still highly connected to most
other areas. At the end of the seizure, the brain activity is returning to
normal, but lasting effects can still be recorded. Eventually, it would be
expected that the connectivity of areas 42D and 34C return to normal, like
at the beginning of the seizure.
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